Properties of definite integrals

$$\int_{a}^{b} (f+g) dx = \int_{a}^{b} f dx + \int_{a}^{b} g dx$$
follows from its sum rule for limits.

$$\int_{a}^{b} (f+g) dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f+g)(c_{k}) \delta x_{k}$$
for $f+g$ $dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f+g)(c_{k}) \delta x_{k}$
for $f+g$ $dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f+g)(c_{k}) \delta x_{k}$
for $f-g$ $dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f+g)(c_{k}) \delta x_{k}$

$$\int_{a}^{b} (f+g) dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f+g)(c_{k}) \delta x_{k}$$
for $f-g$ dx
for $f-g$ dx

$$\int_{a}^{b} (f+g) dx = \lim_{x \to \infty} \sum_{k=1}^{n} (f-g) \delta x_{k} + \lim_{x \to \infty} \sum_{k=1}^{n} (dx) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x) dx = k \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

$$\int_{a}^{b} f(x) dx = k \int_{a}^{b} f(x) dx + \lim_{x \to \infty} k = \lim_{x \to \infty} h(g)$$

Definition 1.3. Let f(x) be continuous on [a, b]. Consider the partition: $x_k = \frac{b-a}{n}k + a$, k = 0, 1, ..., n. For any $c_k \in [x_{k-1}, x_k], k = 1, 2, ..., n$, $\lim_{n \to +\infty} \sum_{k=1}^n f(c_k) \Delta x_k$ is a fixed number, called definite (Riemann) integral of f(x) on [a, b], denoted by $\int_a^b f(x) dx$, i.e.,

$$\lim_{n \to +\infty} \sum_{k=1}^{n} f(c_k) \Delta x_k = \int_a^b f(x) \, dx$$

Hard Theorem: Let f be a piecewise continuous function, then $\int_a^b f(x) dx$ is well-defined. I.e. The limit in the preceding definition exists, and is independent of the choices of c_k .

Remark. The "Lebesque integral" is well-defined for more general functions.

Example 1.3. Evaluate $\int_{2}^{3} x \, dx$ using the left Riemann sum with *n* equally spaced subintervals.

Fundamental thm of Calculus:
An antiderivative of x is
$$F(x) = \frac{x^2}{2}$$

 $\int_{2}^{3} x \, dx = \frac{x^2}{2}\Big|_{2}^{3} = \frac{3^2}{2} - \frac{2^2}{2} = \frac{5}{2}$

Example 1.4. Evaluate $\int_0^1 x^2 dx$ using the right Riemann sum with *n* equally spaced subintervals.

Solution. Let
$$f(x) = x^2$$
. Consider the partition of $[0, 1]$: $x_k = \frac{k}{n}, k = 0, ..., n$.
Right Riemann sum: on $[x_{k-1}, x_k], c_k = x_k = \frac{k}{n}$.

$$\sum_{k=1}^n f(c_k) \Delta x_k = \sum_{k=1}^n \left(\frac{k}{n}\right)^2 \frac{1}{n} = \frac{(n+1)(2n+1)}{6n^2}.$$
Furthermore, $f(a) = \frac{1}{2}$.

$$\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
So, $\int_0^1 x^2 dx = \lim_{n \to +\infty} \frac{(n+1)(2n+1)}{6n^2} = \frac{1}{3}.$
Remark. It's so complicated to used definition to compute $\int_a^b f(x) dx$. Later, we will discuss another easier method: fundamental theorem of calculus.

Using the interpretation of definite integrals as signed areas and its definition as limits of Riemann sums, we have:

Theorem 1.1 (Properties of definite integrals).

1.
$$\int_{a}^{a} f(x) dx = 0$$

2.
$$\int_{a}^{b} k dx = k(b-a)$$

4.
$$\int_{a}^{b} k dx = k(b-a)$$

5.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{a}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$$

5.
$$\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$$

6.
$$\int_{a}^{c} f(x) dx + \int_{a}^{c} f(x) dx$$

7.
$$\int_{a}^{c} f($$

 $= \int_{a} f(x) dx + \int_{b} f(x) dx$ Chapter 10: Definite Integrals $\int_{b} f(x) dx$ 8 y=9(x) ,y=f(x) 6. if $f(x) \leq g(x)$ on [a, b], then $\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$ aver of phyple region area Of the blue 0 refim.

2 The fundamental Theorem of Calculus

Notation:

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(t) dt$$
: definite integral of function f on $[a, b]$, which is a number.
$$\int_{a}^{\infty} f(t) dt$$
: definite integral of function f on $[a, x]$, it can be regarded as a function of x .

Theorem 2.1 (Fundamental Theorem of Calculus).

Assume
$$f(x)$$
 is continuous.
funching in X
1. $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ (i.e. $\int_{a}^{x} f(t) dt$ is an anti-derivative of $f(x)$)
2. Let $F(x)$ be any anti-derivative of $f(x)$, $F'(x) = f(x)$, then
 $\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} := F(b) - F(a)$.
Heuristic explanation:
 $\frac{d}{dx} \int_{0}^{x} f(t) dt = \lim_{x \to 0^{+}} \int_{a}^{x} f(t) dt - \int_{a}^{x} f(t) dt = \lim_{x \to 0^{+}} \int_{x}^{x} f(t) dt = \lim_{x \to 0^{+}} \int_{x}^{x} f(t) dx = F(x) \int_{x}^{x} f(t) dx = \int_{x}^{x} f(t$

Example 2.1. Computing the integrals in Examples 1.3 and 1.4 using the fundamental theorem of calculus.

Example 2.2. Derive Theorem 1.1 from the corresponding theorem for indefinite integrals and the fundamental theorem of calculus.

Remark.

1. Differentiation

$$F'(x) = f(x)$$
 $F'(x) = f(x)$
 $F'(x) = f(x)$

2. Anti-derivative F(x) is not unique. Which one should we choose? Another anti-derivative: $\tilde{F}(x) = F(x) + \underline{C}$, then

$$\tilde{F}(b) - \tilde{F}(a) = (F(b) + \mathcal{O}) - (F(a) + \mathcal{O}) = F(b) - F(a).$$

so, it does not matter, we can choose any anti-derivative.

Example 2.3.

$$\int_{1}^{9} \sqrt{x} \, dx = \int x^{1/2} \, dx \Big|_{1}^{9} = \frac{2}{3} x^{3/2} \Big|_{1}^{9} = \frac{2}{3} (27 - 1) = \frac{52}{3}.$$

Example 2.4. Evaluate $\int_{1}^{2} \ln x \, dx$.

We first find one antiderivative of $\ln x$, $\int \ln x \, dx = x \ln x - \int 1 \, dx \quad \text{(integration by parts)}$

$$\int uv dx = uv - \int vu dx.$$

v = 1 v = x $u = \frac{1}{x}$ u = nx

So,
$$\int_{1}^{2} \ln x \, dx = \frac{(x \ln x - x)}{(2 \ln 2 - 2)} |_{1}^{2} = \frac{2 \ln 2 - 1}{(2 \ln 2 - 2)} \int_{1}^{2} \ln x \, dx = \frac{1}{(2 \ln 2 - 2)} \int_{1}^{2} \ln x \, dx + \frac{1}{(2 \ln 2 - 2)} \int_{$$

Example 2.5. Let

$$f(x) = \begin{cases} \underline{x^2}, & \underline{x < 2} \\ 3x - 2, & \underline{x \ge 2} \end{cases}$$

Find
$$\int_{0}^{3} f(x) dx$$
.

$$= \int_{0}^{2} f(x) dx + \int_{2}^{3} f(x) dx$$

$$= \int_{0}^{2} x^{2} dx + \int_{2}^{3} (3x - x) dx$$

$$= \frac{x^{3}}{2} \Big|_{0}^{2} + \frac{(3x^{2} - 2x)}{2} \Big|_{2}^{3}$$

$$\int_{0}^{3} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{3} f(x) dx = \int_{0}^{2} x^{2} dx + \int_{2}^{3} (3x - 2) dx \quad \text{(integrate separately)}$$
$$= \frac{x^{3}}{3} \Big|_{0}^{2} + \left[\frac{3x^{2}}{2} - 2x\right]_{2}^{3} = \left(\frac{8}{3} - 0\right) + \left(\frac{15}{2} - 2\right) = \frac{49}{6}.$$

Exercise 2.1.

$$u = \chi^{2}, \quad du = 2\chi d\chi$$

$$\int 2\chi e^{\chi^{2}} dx = e - 1.$$

$$\int_{0}^{1} 2xe^{\chi^{2}} dx = e - 1.$$

$$\int 2\chi e^{\chi^{2}} dx = \int e^{\chi} du = e^{\chi} + C$$

$$\int 2\chi e^{\chi^{2}} dx = \int e^{\chi} du = e^{\chi} + C$$

$$= e^{\chi^{2}} + C.$$

$$\int 2\chi e^{\chi} dx = \frac{5}{2}.$$

$$\int (\chi) = \int \chi dx = \chi = 0$$

$$\int (\chi) = \int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) = \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + \int (\chi) d\chi + \chi = 0$$

$$\int (\chi) d\chi + 0$$

$$\int (\chi) d\chi + 0$$

$$\int (\chi) d\chi + 0$$

Solution. It's impossible to get explicit formula for $F(t) = \int e^{t^2} dt$.

1. By fundamental theorem of calculus (1), we have

$$\frac{d}{dx}\int_1^x e^{t^2} dt = e^{x^2}.$$

2. Let $F'(t) = e^{t^2}$, then

$$\frac{d}{dx}\int_{x^2}^{x^3}e^{t^2}dt = \frac{d}{dx}(F(x^3) - F(x^2)) = F'(x^3) \cdot 3x^2 - F'(x^2) \cdot 2x = e^{x^6} \cdot 3x^2 - e^{x^4} \cdot 2x.$$